If we include systems with man or horse power, and tracks or guides made of stone or wood, the history of rail transport dates back as far as the ancient Greeks.
Wagonways were relatively common in Europe (typically in mining) from about 1500 through 1800. Mechanised rail transport systems first appeared in England in the 1820s. These systems, which made use of the steam locomotive, were critical to the Industrial Revolution and to the development of export economies across the world. They have remained the primary form of long distance land transportation for many bulk materials such as coal, ore, grains, stone and sand and gravel.
Because a stiff wheel rolling on a rigid rail requires far less energy per ton-mile moved than road transport (with a highly compliant wheel on an uneven surface), railroads are highly suitable for the movement of dense, bulk goods such as coal and other minerals. This was an incentive to experiment with many configurations and shapes of wheels and rails. In the late 1760s, the Coalbrookdale Company began to fix plates of cast iron to the upper surface of the wooden rails. These (and earlier railways) had flanged wheels as on modern railways, but another system was introduced, in which unflanged wheels ran on L-shaped metal plates – these became known as plateways. John Curr, a Sheffield colliery manager, invented this flanged rail, though the exact date of this is disputed. The plate rail was taken up by Benjamin Outram for wagonways serving his canals, manufacturing them at his Butterley ironworks. Meanwhile, William Jessop, a civil engineer, had used a form of edge rail successfully for an extension to the Charnwood Forest Canal at Nanpantan, Loughborough, Leicestershire in 1789. Jessop became a partner in the Butterley Company in 1790. The flanged wheel eventually proved its superiority due to its performance on curves, and the composite iron/wood rail was replaced by an all-metal rail, with its vastly superior stiffness, durability, and safety.
Cast iron proved unsatisfactory because it was brittle and broke under heavy loads. Wrought iron (usually simply referred to as “iron”) was a ductile material that could undergo considerable deformation before breaking; but iron was expensive to produce until Henry Cort patented the puddling process in 1784. In 1783 Cort also patented the rolling process, which was 15 times faster at consolidating and shaping iron than hammering. These processes greatly lowered the cost of producing iron and rails. The next important development in iron production was hot blast developed by James Beaumont Neilson (patented 1828), which considerably reduced the amount of coke (fuel) or charcoal needed to produce pig iron.
Wrought iron was a soft material that contained included slag or dross. The softness and dross tended to make iron rails distort and delaminate, and they lasted less than 10 years. Sometimes they lasted as little as one year under high traffic.
The introduction of the Bessemer process, enabling steel to be made inexpensively, led to the era of great expansion of railways that began in the late 1860s. Steel rails lasted several times longer than iron. Steel rails made heavier locomotives possible, allowing for longer trains and improving the productivity of railroads. The Bessemer process introduced nitrogen into the steel, which caused the steel to become brittle with age. The open hearth furnace began to replace the Bessemer process near the end of 19th century, improving the quality of steel and further reducing costs.
Steam power introduced
James Watt, a Scottish inventor and mechanical engineer, was responsible for improvements to the steam engine of Thomas Newcomen, hitherto used to pump water out of mines. Watt developed a reciprocating engine, capable of powering a wheel. Although the Watt engine powered cotton mills and a variety of machinery, it was a large stationary engine. It could not be otherwise: the state of boiler technology necessitated the use of low pressure steam acting upon a vacuum in the cylinder; this required a separate condenser and an air pump. Nevertheless, as the construction of boilers improved, Watt investigated the use of high-pressure steam acting directly upon a piston. This raised the possibility of a smaller engine, that might be used to power a vehicle, and he patented a design for a steam locomotive in 1784. His employee William Murdoch produced a working model of a self-propelled steam carriage in that year.
The first full-scale working railway steam locomotive was built in the United Kingdom in 1804 by Richard Trevithick, an English engineer born in Cornwall. (The story goes that it was constructed to satisfy a bet by Samuel Homfray, the local iron master.) This used high-pressure steam to drive the engine by one power stroke. The transmission system employed a large flywheel to even out the action of the piston rod. On 21 February 1804 the world’s first railway journey took place when Trevithick’s unnamed steam locomotive hauled a train along the tramway of the Penydarren ironworks, near Merthyr Tydfil in South Wales. Trevithick later demonstrated a locomotive operating upon a piece of circular rail track in Bloomsbury, London, the Catch Me Who Can, but never got beyond the experimental stage with railway locomotives, not least because his engines were too heavy for the cast-iron plateway track then in use. Despite his inventive talents, Richard Trevithick died in poverty, with his achievement largely unrecognized.
The Napoleonic Wars resulted in (amongst other things) a dramatic rise in the price of fodder. This was the imperative that made the locomotivean economic proposition, if it could be perfected.
The first commercially successful steam locomotive was Matthew Murray‘s rack locomotive Salamanca built for the narrow gauge Middleton Railway in Leeds in 1812. This twin-cylinder locomotive was not heavy enough to break the edge-rails track, and solved the problem of adhesion by a cog-wheel using teeth cast on the side of one of the rails. It was the first rack railway.
This was followed in 1813 by the Puffing Billy built by Christopher Blackett and William Hedley for the Wylam Colliery Railway, the first successful locomotive running by adhesion only. This was accomplished by the distribution of weight between a number of wheels. Puffing Billy is now on display in the Science Museum in London, the oldest locomotive in existence.
In 1814 George Stephenson, inspired by the early locomotives of Trevithick, Murray and Hedley, persuaded the manager of the Killingworth colliery where he worked to allow him to build a steam-powered machine. He built the Blücher, one of the first successful flanged-wheel adhesion locomotives. Stephenson played a pivotal role in the development and widespread adoption of the steam locomotive. His designs considerably improved on the work of the earlier pioneers. In 1825 he built the Locomotion for the Stockton and Darlington Railway in the north east of England, which was the first public steam railway in the world. Such success led to Stephenson establishing his company as the pre-eminent builder of steam locomotives used on railways in the United Kingdom, United States and much of Europe.